
Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Linux

Boot Linux faster

Contents:
Before you begin

Overview

Linux boot sequence and
runlevels

What is a runlevel?

How init initializes the
system

System services

Where do services live?

How does the rc script
know which scripts to run in
each runlevel?

Service link names

Starting and stopping
services

How to find out what
services are enabled

Enabled services versus
running services

Limitations of the
traditional services
framework

Dependencies between
services

Working out dependencies
between services

Sample implementation

Conclusion (and a few
additional considerations)

Resources

About the author

Rate this article

Related content:

Parallelize Linux system services to improve boot speed

Level: Intermediate

James Hunt (jameshunt-at-uk.ibm.com)
Software Engineer, IBM
September 17, 2003

This article shows you how to improve the boot speed of your Linux system without
compromising usability. Essentially, the technique involves understanding system services
and their dependencies, and having them start up in parallel, rather than sequentially, when
possible.

Although undoubtedly an excellent system, a common criticism of Linux -- voiced particularly by
those from a Microsoft Windows background -- is that it takes a long time between pressing the
"on" button and actually being able to use a Linux system. In essence, their argument goes, Linux
takes a long time to boot.

Although simple to understand, the technique I present here for speeding the boot process requires
careful implementation; my hope is that Linux distributions will adopt this technique and users will
be spared the configuration task. But if you're feeling adventurous, read on.

Before you begin
If you intend to experiment with this technique, you must be familiar with Linux configuration
scripts. Modifying system startup settings can be hazardous, and you might end up with a system
that won't boot. If this happens, reboot into single-user mode (runlevel 1), undo the changes you
made, and then reboot. As always, keep backups of all the files you change and have at least one
system backup image in case the worst happens.

I would highly recommend that before you consider modifying a production system in the ways I
suggest, use a test system that you can afford to trash. If you only have one machine, a very useful
facility is UML, or User Mode Linux. UML is a kernel patch that allows the Linux kernel to be
compiled into a binary that you can run as a normal program. This means that you can run a full
Linux system as a process on your normal system. You can imagine it as running a Linux system
inside your normal system. (See the Resources at the end of this article for a link to the UML
download site and a developerWorks tutorial on UML.)

Using UML allows you to play with a test system that you can completely destroy without affecting
your normal system.

Overview
The first part of this article covers the background of how a Linux system is started once the Linux
kernel (the "core" of the Linux machine) has loaded. It then goes on to present a technique that can
improve the speed at which your system boots.

If you are already familiar with runlevels and service startup scripts, you might want to jump to
Limitations of the traditional services framework.

Linux boot sequence and runlevels
When a Linux machine boots up, it goes through a number of distinct phases. This article will not
explain all the different phases, since we are only interested in the phases after the kernel has
loaded.

To establish your machine's current runlevel, you can run the /sbin/runlevel command. (See

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/linux/
http://www-106.ibm.com/developerworks/
ftp://www6.software.ibm.com/software/developer/library/l-boot/runlevel.zip
javascript:void newWindow()
mailto:jameshunt-at-uk.ibm.com

Slackware Linux 101: A
look at what happens when
you boot your Linux box

Introduction to User-Mode
Linux

Subscribe to the
developerWorks newsletter

developerWorks Toolbox
subscription

Also in the Linux zone:
Tutorials

Tools and products

Code and components

Articles

man runlevel for further details.)

Once the kernel has been loaded and has started to run, it calls the /sbin/init program. This
program runs as root and sets the "runlevel" to that requested at initial boot time. (For more details
on the init program, consult man init.)

What is a runlevel?
A runlevel is simply a number that Linux uses to distinguish different types of high-level
configurations that the machine should be booted into. These runlevel numbers are on the whole
"well-known," in the sense that most of them have very clearly defined meanings. On a Red Hat
Linux system, the main runlevels are shown in Table 1.

Table 1. Red Hat Linux runlevels

Runlevel Explanation

0 Halt the system

1 Single user mode (generally only used for administration purposes)

2 Multi-user mode with networking disabled

3 Multi-user mode with networking enabled

4 Unused runlevel

5 Multi-user mode with networking enabled, and X-Windows (graphical login)

6 Reboot

How init initializes the system
init uses an ASCII configuration file (/etc/inittab) to tell it how to change the runlevel. Usually, this configuration file instructs
init to run the script /etc/rc.d/rc, passing it the runlevel number.

The rc.sysinit script
On Red Hat systems, before
running the rc script, init runs the
script /etc/rc.d/rc.sysinit, which
performs required low-level setup
tasks such as setting the system
clock, checking the disks for errors,
and subsequently mounting file
systems.

From this article's perspective, the rc script is where things get interesting.

System services
The rc script is responsible for starting all the services that the users require. As the name
suggests, services are useful facilities that the system provides. There are potentially lots
of services to start. Most Linux systems will start sshd (the SecureShell service), syslog
(system logging facility), and lpd (printing service), but there could be many more. As an
example, one of my Red Hat 9 system currently runs 29 services, but if I switched on all
the services, this number would be closer to 50.

It is important to understand that an individual service may only start in particular
runlevels. For example, there is little point in starting some form of graphical service in any runlevel apart from runlevel 5
(multi-user mode with graphics), since all the other runlevels are non-graphical. We will discuss this point further, below.

Where do services live?

Alternative services directory
On some Linux systems, services
are sometimes located in the
/etc/init.d/ directory instead.

Services are usually found in the /etc/rc.d/init.d/ directory.

If you browse around this directory, you'll find that quite a few (if not all) of the services
are really shell scripts that call other programs to actually do the hard work.

How does the rc script know which scripts to run in each runlevel?
Going back to the point that we don't want certain services to start in certain runlevels, how do we tell this system to do this? The
answer is that below the /etc/rc.d/ directory, alongside the init.d/ directory already discussed, is a set of directories, one for each
runlevel. These directories are named rc<runlevel>.d/; so, for example, the directory for runlevel 5 is /etc/rc.d/rc5.d/. Each of
these rc.d directories contains a set of symbolic links back to the actual service programs in the /etc/rc.d/init.d/ directory. In fact,
as we will find out later, there are actually two symbolic links per service.

Service link names
The names of these symbolic links to the actual service programs are important, as they follow a strict naming convention that
lets the rc script know how to handle them.

For easy identification, the name of each link is suffixed with the name of the service it is linked to.

The prefix is made up of two parts: a single uppercase character followed by a two-digit decimal number. The single uppercase
character is either an "S" (meaning "start") or a "K" (meaning "kill," or stop). The two-digit number can range from 00 to 99.

http://www-106.ibm.com/developerworks/linux/library/l-slack.html
http://www-106.ibm.com/developerworks/linux/library/l-slack.html
http://www-106.ibm.com/developerworks/linux/library/l-slack.html
http://www-106.ibm.com/developerworks/linux/edu/l-dw-linuxuml-i.html
http://www-106.ibm.com/developerworks/linux/edu/l-dw-linuxuml-i.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/linux/
http://www-106.ibm.com/developerworks/views/linux/tutorials.jsp
http://www-106.ibm.com/developerworks/views/linux/tools.jsp
http://www-106.ibm.com/developerworks/views/linux/code.jsp
http://www-106.ibm.com/developerworks/views/linux/articles.jsp

Service link name regular
expression
The names of the symbolic links to
the services can be summarized by
the egrep regular expression,
[SK][0-9]{2}[a-zA-Z]+.
(Read man egrep for further
details on egrep).

Starting and stopping services
If we've decided to boot our Linux machine into graphical mode (runlevel 5), when init
calls the rc script and passes it the runlevel number, the rc script will look in the directory
/etc/rc.d/rc5.d/, and it will execute all the links it finds (in other words, it will run the
program/script each link points to). It will run the links in two distinct phases; first it will
execute all the links starting with a "K," passing these links the parameter "stop." This will
have the effect of stopping all the services the links refer to.

Having stopped all the services it needs to, it will then execute all the links beginning with
an "S," passing them the parameter "start," which will have the effect of starting all the
services the links refer to. The rc script also passes the parameter "start" to each program.

The reason rc passes a parameter "start" or "stop" to each service program is to allow the same service program to be used to start
and stop the service -- the service program knows whether the system is booting up or shutting down based on the value of the
parameter passed to it.

There is one important aspect that I have not yet explained -- the numeric portion of the link names. The two-digit decimal
number after the "S" or the "K" in the name of each link is used by the rc script to establish the order that the links (in other
words, the services the links refer to) should be run. Links with a very low number (such as 00, 01, etc.) get run before links with
high numbers (99 is the highest). We will come back to this important point later in the article.

Confused yet? An example should help explain. Listing 1 shows the links for runlevel 5. On booting to runlevel 5, the first link
that will be executed will be K05saslauthd, since it starts with "K" and has the lowest two-digit decimal number of all the "K"
links. The first startup link that will be run is S05kudzu, since it starts with "S" and has the lowest two-digit decimal number of
all the "S" links. The last link to be run will be S99local.

Listing 1. Runlevel 5 links to service programs

cd /etc/rc.d/rc5.d
ls -al
total 8
drwxr-xr-x 2 root root 4096 Jul 15 09:29 .
drwxr-xr-x 10 root root 4096 Jun 21 08:52 ..
lrwxrwxrwx 1 root root 19 Jan 1 2000 K05saslauthd ->
../init.d/saslauthd
lrwxrwxrwx 1 root root 20 Feb 1 2003 K15postgresql ->
../init.d/postgresql
lrwxrwxrwx 1 root root 13 Jan 1 2000 K20nfs -> ../init.d/nfs
lrwxrwxrwx 1 root root 14 Jan 1 2000 K24irda -> ../init.d/irda
lrwxrwxrwx 1 root root 17 Jan 1 2000 K35winbind -> ../init.d/winbind
lrwxrwxrwx 1 root root 15 Jan 1 2000 K50snmpd -> ../init.d/snmpd
lrwxrwxrwx 1 root root 19 Jan 1 2000 K50snmptrapd ->
../init.d/snmptrapd
lrwxrwxrwx 1 root root 16 Jun 21 09:43 K50vsftpd -> ../init.d/vsftpd
lrwxrwxrwx 1 root root 16 Jun 21 08:57 K73ypbind -> ../init.d/ypbind
lrwxrwxrwx 1 root root 14 Jun 21 08:54 K74nscd -> ../init.d/nscd
lrwxrwxrwx 1 root root 18 Feb 8 11:15 K92iptables -> ../init.d/iptables
lrwxrwxrwx 1 root root 19 Feb 1 2003 K95firstboot ->
../init.d/firstboot
lrwxrwxrwx 1 root root 15 Jan 1 2000 S05kudzu -> ../init.d/kudzu
lrwxrwxrwx 1 root root 14 Jun 21 08:55 S09isdn -> ../init.d/isdn
lrwxrwxrwx 1 root root 17 Jan 1 2000 S10network -> ../init.d/network
lrwxrwxrwx 1 root root 16 Jan 1 2000 S12syslog -> ../init.d/syslog
lrwxrwxrwx 1 root root 17 Jan 1 2000 S13portmap -> ../init.d/portmap
lrwxrwxrwx 1 root root 17 Jan 1 2000 S14nfslock -> ../init.d/nfslock
lrwxrwxrwx 1 root root 18 Jan 1 2000 S17keytable -> ../init.d/keytable
lrwxrwxrwx 1 root root 16 Jan 1 2000 S20random -> ../init.d/random
lrwxrwxrwx 1 root root 16 Jun 21 08:52 S24pcmcia -> ../init.d/pcmcia
lrwxrwxrwx 1 root root 15 Jan 1 2000 S25netfs -> ../init.d/netfs
lrwxrwxrwx 1 root root 14 Jan 1 2000 S26apmd -> ../init.d/apmd
lrwxrwxrwx 1 root root 16 Jan 1 2000 S28autofs -> ../init.d/autofs
lrwxrwxrwx 1 root root 14 Jan 1 2000 S55sshd -> ../init.d/sshd
lrwxrwxrwx 1 root root 20 Jan 1 2000 S56rawdevices ->

../init.d/rawdevices
lrwxrwxrwx 1 root root 16 Jan 1 2000 S56xinetd -> ../init.d/xinetd
lrwxrwxrwx 1 root root 14 Feb 1 2003 S58ntpd -> ../init.d/ntpd
lrwxrwxrwx 1 root root 13 Jun 21 10:42 S60afs -> ../init.d/afs
lrwxrwxrwx 1 root root 13 Jan 1 2000 S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 16 Feb 8 17:26 S78mysqld -> ../init.d/mysqld
lrwxrwxrwx 1 root root 18 Jan 1 2000 S80sendmail -> ../init.d/sendmail
lrwxrwxrwx 1 root root 13 Jan 1 2000 S85gpm -> ../init.d/gpm
lrwxrwxrwx 1 root root 15 Mar 22 08:24 S85httpd -> ../init.d/httpd
lrwxrwxrwx 1 root root 15 Jan 1 2000 S90crond -> ../init.d/crond
lrwxrwxrwx 1 root root 13 Jan 1 2000 S90xfs -> ../init.d/xfs
lrwxrwxrwx 1 root root 17 Jan 1 2000 S95anacron -> ../init.d/anacron
lrwxrwxrwx 1 root root 13 Jan 1 2000 S95atd -> ../init.d/atd
lrwxrwxrwx 1 root root 15 Jun 21 08:57 S97rhnsd -> ../init.d/rhnsd
lrwxrwxrwx 1 root root 14 Jul 15 09:29 S98wine -> ../init.d/wine
lrwxrwxrwx 1 root root 13 Feb 8 17:26 S99db2 -> ../init.d/db2
lrwxrwxrwx 1 root root 11 Jun 21 08:52 S99local -> ../rc.local

This might seem like a fairly complicated system, but actually it offers great flexibility, because if you want to temporarily
disable a service in a particular runlevel, just remove the appropriate link. However, manipulating links can become tiresome and
error prone (especially if you're tired!), so there is a better way in the form of a command called chkconfig.

chkconfig and xinetd
If you have a newer version of
chkconfig, you will have a
section at the end of the main output
showing the configuration of xinetd
(the Internet services daemon). This
section has been removed from
Listing 2 to simplify the
explanation.

How to find out what services are enabled
To see how many services you have enabled, run this command:

/sbin/chkconfig --list

Listing 2 shows the output of this command. As you can see, there are eight columns per
line.

The chkconfig command can also be used to switch any service off or on. See the
manual page (man chkconfig) for further details.

Listing 2. Output of chkconfig --list|sort

afs 0:off 1:off 2:off 3:on 4:off 5:on 6:off
anacron 0:off 1:off 2:on 3:on 4:on 5:on 6:off
apmd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
autofs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
crond 0:off 1:off 2:on 3:on 4:on 5:on 6:off
db2 0:off 1:off 2:off 3:on 4:off 5:on 6:off
firstboot 0:off 1:off 2:off 3:off 4:off 5:off 6:off
gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:off
httpd 0:off 1:off 2:off 3:off 4:off 5:on 6:off
iptables 0:off 1:off 2:off 3:off 4:off 5:off 6:off
irda 0:off 1:off 2:off 3:off 4:off 5:off 6:off
isdn 0:off 1:off 2:on 3:on 4:on 5:on 6:off
keytable 0:off 1:on 2:on 3:on 4:on 5:on 6:off
kudzu 0:off 1:off 2:off 3:on 4:on 5:on 6:off
lpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
mysqld 0:off 1:off 2:off 3:on 4:off 5:on 6:off
netfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off
network 0:off 1:off 2:on 3:on 4:on 5:on 6:off
nfs 0:off 1:off 2:off 3:off 4:off 5:off 6:off
nfslock 0:off 1:off 2:off 3:on 4:on 5:on 6:off
nscd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
ntpd 0:off 1:off 2:off 3:on 4:off 5:on 6:off
pcmcia 0:off 1:off 2:on 3:on 4:on 5:on 6:off
portmap 0:off 1:off 2:off 3:on 4:on 5:on 6:off
postgresql 0:off 1:off 2:off 3:off 4:off 5:off 6:off
random 0:off 1:off 2:on 3:on 4:on 5:on 6:off

rawdevices 0:off 1:off 2:off 3:on 4:on 5:on 6:off
rhnsd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
saslauthd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
sendmail 0:off 1:off 2:on 3:on 4:on 5:on 6:off
snmpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
snmptrapd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
sshd 0:off 1:off 2:on 3:on 4:on 5:on 6:off
syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:off
vsftpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off
winbind 0:off 1:off 2:off 3:off 4:off 5:off 6:off
wine 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xfs 0:off 1:off 2:on 3:on 4:on 5:on 6:off
xinetd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
ypbind 0:off 1:off 2:off 3:off 4:off 5:off 6:off

The first column in Listing 2 is the name of the service, and the subsequent columns represent the runlevels and the status of the
service in each runlevel. For example, the ntpd (Network time daemon) service is configured to be started only in runlevels 3
(multi-user mode without graphics) and 5 (multi-user mode with graphics), and the sshd service is switched on in runlevels 2, 3,
4, and 5.

Note that no services are started in runlevels 0 and 6. Looking back to Table 1, the reason for this is obvious. Runlevel 0 means
halt or stop the system, so you would not want to start any services when the machine is "coming down." The same logic applies
for runlevel 6.

Runlevel 1 -- "single-user mode" -- is a special runlevel that is generally only used when something goes wrong. Traditionally,
the only application that runs in runlevel 1 is a shell to allow the superuser to repair damage to a system or to allow the superuser
to modify the system in a safe environment. It is safe, since -- as the name "single-user mode" suggests -- only the superuser is
able to access the system. Additionally, networking is disabled, so nobody can log in remotely. As Table 1 shows, the only
service that runs for single-user mode is keytable, so that the superusers keyboard will work as expected.

Enabled services versus running services
Occasionally, services might fail to start for some reason, so to see which services are currently running, run this command:

/sbin/service --status-all

This command will output one or more lines per service, showing whether each service is running, and if so, it might show some
service-specific output such as the PID (process id) the service is running under. The service command doesn't have a manual
page, but if you run it with the --help option, you can get some help with its operation.

Limitations of the traditional services framework
Crucially, only when all the services that are configured to start have started can you log into your Linux system. Waiting for 50
services to start could take a number of minutes, which is time lost enjoying your Linux system.

I have found a way to speed up this process. Note that the technique does not involve stopping any services. However, shutting
down unused services is highly prudent, not only because it increases boot up speed (as there is less to run before the machine
can be logged into), but also because it reduces your exposure to security exploits, since many services run as the root user.

To recap, when a Linux system boots, it runs all the services that have been configured to start for the runlevel in a serial fashion
-- one after the other. This can be a time-consuming operation.

Perhaps an obvious way to speed up the starting of services is to run all the services in parallel, so that they all start at the same
time. Unfortunately, while this sounds highly appealing, it does not work. The reason is that there are dependencies between
services. Linux does not make these dependencies 100 percent explicit, but they are there nonetheless. Remember the name
format of the links to the service programs we discussed earlier? The two-digit numbers after the "S" or the "K" determine the
order in which the links (and thus the services they refer to) are run. The numbers enforce a crude ordering, and hence sometimes
also enforce dependencies between services.

Dependencies between services
Looking back to Listing 1, we can see that the network service (S10network) will run before the ntpd service (S58ntpd). This is
as we would expect, since the ntpd service requires the network to be available so that it can contact a local time server.
Unfortunately, this crude ordering does not tell us as much as we'd like and can be misleading. For example, in Listing 1 we see
that the lpd service (S60lpd) would also run after the network service. Although this is correct for a Linux system that is
connected to a network and uses network printers, it does not follow that the lpd service absolutely must run after the network
service for a home system with an inkjet printer plugged in the back. Indeed, in this case, it might make more sense to start lpd

before the network.

Taking another example: the crond (cron daemon) service (S90crond in Listing 1) also runs after the network has started.
However, unless you have a cron file that uses files on a remote machine, there is no reason that crond should not start before the
network.

The general tendency is to "play it safe" and start all the important services first, and then run whatever is left, because the
traditional method of starting services under Linux that I have just outlined is somewhat limited.

What is becoming apparent as we explore the system is that some services rely on others, whereas some services are
"stand-alone" in that they are not dependent on any other service.

So, although we cannot start all the services in parallel, we could start all those services that have no dependencies in parallel.
When these dependency-free services have started, we could then start all services whose dependencies have already been
satisfied (in other words, those services with services they depend on having already been started). This process could be
repeated until all the services had been started.

This sounds like a complicated problem, but luckily for us, a program has already been written that will solve it for us. This
program is none other than make.

Normally associated with compiling software, make provides exactly the framework we need. All we need to do is tell make
what the dependencies between services are; it does all the hard work of calculating cross-dependencies, and with its little-known
-j flag, it will run as many "jobs" (or in our case, services) as it can simultaneously.

Working out dependencies between services
As I alluded to above, the traditional Linux system does not make explicit the dependencies between services, so unfortunately, it
is now time to do some hard work and work out the dependencies ourselves. This will probably take a while, since you may not
even know what each service is doing, let alone how it relates to other services. Unfortunately, if you don't go through this
exercise, the technique will be of zero benefit to you. (As mentioned above, the hope is that if this technique is useful, the Linux
distributions will adopt it and do the hard work for us.)

Understanding your services
If, when you run the command
/sbin/chkconfig --list,
you are confronted with services
that you do not recognize, take the
time to find out what they do. The
easiest way to do this is by looking
at the comments at the top of the
script that controls the service. It
may be that you can switch off the
service if you do not need the
facility. Even if you do need it, it
pays to understand your system.

For now, lets take a simple example. We know that ntpd needs a network, hence it follows
that the ntpd service is dependent on the network service. This is represented in make
syntax as shown here:

ntpd : network

We can also say with certainty that the netfs service (that mounts all NFS directories we
need) is dependent on a network. On my system (yours may be different), the autofs
service (automatic mounting of network file systems) is also dependent on the network
service, since I only ever automount remote file systems (you may mount local CD-ROMs
or floppies, though). Our "dependency table" now looks like this:

ntpd : network
netfs : network
autofs : network

This doesn't look like much, but can you see what this means? It means that once the network service has started, we can then
start the ntpd, netfs, and autofs services in parallel.

As a contrived example, imagine that all services take 10 seconds to run. With the traditional service startup method, starting the
network, ntpd, netfs, and autofs services would take 40 seconds. Using this technique, it would only take 20 seconds -- a savings
of 50 percent.

Why is this? Well, it takes 10 seconds to start the network service, but (because by the time the rc script is run, the machine is
running in a fully multi-tasking way) the other three services can start simultaneously, so combined they only take 10 seconds to
run in total.

In reality, most services probably will not take 10 seconds to start, but since each service is doing something completely
different, the time to start them can vary greatly.

Sample implementation
The zip file I have provided in the Resources section contains a sample implementation of the technique outlined. It includes a
modified rc script that calls the make command, along with sample GNU makefiles runlevel.mk, start5.mk, and stop5.mk. The
runlevel.mk makefile is the controlling program, while start5.mk and stop5.mk encode the service dependencies when starting
and stopping services for runlevel 5, respectively.

Note that the start and stop makefiles provided do not contain complete lists of dependencies between services. They are an
example only. Note also that attempting to use these makefiles unmodified on your system will almost certainly not work, as you
will probably have a different list of services from mine.

Conclusion (and a few additional considerations)
I have presented a technique for improving the speed that a Linux machine boots. The technique achieves this by allowing the
latter part of the boot sequence to be run in parallel, rather than in the traditional serial fashion. The technique is aesthetically
elegant and utilizes existing system tools.

The effectiveness of this technique depends on the number of services that need to be run as well as the time it takes for each
service to run. The degree of parallelization possible is controlled largely by the dependencies between services. It may be that
using this technique makes little improvement for some systems, while for others, it could have a dramatic impact on boot speed.
This can be explained by the fact that each system has a different set of services enabled, and each of these services takes
differing amounts of time to run. Once again, to use this technique, you need to establish the dependencies between the services
you use for your particular system.

Additional considerations:
Some service programs simply run a program in the background and then they themselves exit (in other words, the service
program finishes, but the real work is still happening in the background). This points to the fact that the traditional system
is deficient and that the writers of such services are attempting to shave off a few cycles while working within the confines
of the existing framework. Adopting the technique described here would make the dependencies more explicit and would
not require service writers to "cheat," so to speak. This technique allows for a more efficient framework to be built around
the service programs.

●

Using the technique outlined is not really appropriate when you wish to boot your system "interactively," since you will
generally only do this when something is wrong; in this case, you probably want to run all the services serially to see
which is causing a problem. However, it would be very easy to modify the system startup to allow the user to select at boot
time whether they wished to boot with either "serial" (allowing interactive service startup) or "parallel" service startup.

●

Adopting this technique might involve further thought, since if both traditional and new systems are provided to users, two
sets of information on how services start up would need to be maintained in sync (the ordered rc.d/ link files and the
runlevel make files). A better solution for Linux distributions might be to autogenerate the link files from the makefiles,
since the makefiles encode more information about the services than the link files do.

●

This system might not be suitable for a professional server for which, if a service fails, the administrator wants to see this
failure by viewing the console as soon as it happens. However, for the average end-user system, the parallelization
technique can dramatically improve boot-up speed while still allowing the user to see if any problems occurred.

●

Interestingly, although the technique I have outlined is not "Linux-like" in the traditional sense, the Linux Standards Base
(LSB) does not appear to specify the order in which the init.d scripts are run, so it may be that this technique could be
adopted by Linux distribution vendors and still allow them to be LSB-compliant. This would be a boon for users, as
mentioned earlier, since the distribution vendors could calculate all the package dependencies for us.

●

It is possible that a more aggressive approach could be taken by modifying the "action field" in the /etc/inittab file to be
"once" rather than "wait". This could allow the user to log in even before the services have finished executing. However,
this is beyond the scope of this article. View man inittab for further details, and remember, UML is your friend.

●

Resources

Download a zip file containing a sample implementation of the technique outlined this article.●

The official GNU Make homepage contains make downloads and links to make documentation.●

The LSB (Linux Standard Base) aims to define explicitly what constitutes a Linux system. The LSB common document
covers system "System Initialization."

●

The UML (User Mode Linux) homepage contains links to UML documentation and downloads, to allow you to run a
"virtual" linux system on your real Linux system.

●

For a thorough guide to getting started with UML, read the tutorial "Introduction to User-Mode Linux" (developerWorks,●

ftp://www6.software.ibm.com/software/developer/library/l-boot/runlevel.zip
http://www.gnu.org/software/make/
http://www.linuxbase.org/spec/
http://user-mode-linux.sourceforge.net/
http://www-106.ibm.com/developerworks/edu/l-dw-linuxuml-i.html

January 2003).

Find more resources for Linux developers in the developerWorks Linux zone.●

About the author
James Hunt is a software engineer at IBM Hursley in the United Kingdom. He is not a racing driver and his car is definitely not
of the racing variety. James is a self-confessed Linux fanatic and has spent many happy hours preaching on the subject to anyone
within earshot. He works on the WebSphere MQ product on distributed platforms (AIX, HP-UX, Linux, OS/400, Solaris, and
Windows). His background is in UNIX system administration and database administration and programming. His Linux interests
include file systems and compilers, and he is the author of possibly the only Perl Coding Standards document in existence. James
is one of those strange people who actually enjoys writing technical documentation. In his spare time he plays guitar, dabbles in
Yoga, and sails dinghies, although he has not yet managed to parallelize these activities. You can reach James at
jameshunt-at-uk.ibm.com.

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks > Linux

 About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/linux/
mailto:jameshunt@uk.ibm.com
ftp://www6.software.ibm.com/software/developer/library/l-boot/runlevel.zip
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/linux/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	Boot Linux faster

	HIADLOCPKIMFBIMACDCPJEOPEELAACCI:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: Boot Linux faster
	f2: Linux
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

